Behavioral Economics

Lecture 2: Making Choices over Time Part (g): Projection Bias

Professor Bushong

"Projection Bias"

Introduced by Loewenstein, O'Donoghue, & Rabin (QJE 2003)

"Projection Bias":

People understand qualitatively the directions in which their tastes change, but they systematically underappreciate the magnitudes of these changes.

A Model of Projection Bias

Step 1: A Model of Changing Tastes

To describe changes in tastes, we use "state-dependent utility":

The instantaneous utility in period t is $u(c_t, s_t)$, where c_t is period-t consumption and s_t is the period-t "state".

Two examples:

- \blacksquare *u*(pie,hungry) > *u*(pie,full)
- \blacksquare *u*(coat,cold) > *u*(coat,warm)

Step 2: Predictions of Future Tastes

Suppose you're predicting tastes given future state s, but this prediction is potentially contaminated by your current state s'.

- True tastes will be u(c, s).
- Current tastes are u(c, s').
- Let $\tilde{u}(c, s | s')$ denote the prediction.

Example: Suppose you're predicting what your utility from a slice of pie will be when you're full, but this prediction is potentially contaminated by the fact that you're currently hungry.

- True tastes will be u (pie, full).
- Current tastes are u (pie, hungry).
- \tilde{u} (pie, full|hungry) denotes your prediction.

A Model of Projection Bias

Punger 1

Step 2: Predictions of Future Tastes (cont)

Standard model: $\tilde{u}(c, s|s') = u(c, s)$.

The standard economic assumption is that people's predictions are accurate. Two examples:

- \tilde{u} (pie, full|hungry) = u (pie, full)
- $\quad \blacksquare \ \widetilde{u}(\text{coat},\text{warm}|\text{cold}) = u(\text{coat},\text{warm})$

"Projection bias" means $\tilde{u}(c, s|s')$ in between u(c, s) & u(c, s').

Two examples:

- u (pie, full) < \tilde{u} (pie, full|hungry) < u (pie, hungry)
- \blacksquare $u(\text{coat}, \text{warm}) < \tilde{u}(\text{coat}, \text{warm}|\text{cold}) < u(\text{coat}, \text{cold})$

A Model of Projection Bias

Step 3: A Simple Formulation

A person has "simple projection bias" if

$$\widetilde{u}(c,s|s') = (1-\alpha) * u(c,s) + \alpha * u(c,s').$$

 $\begin{tabular}{ll} $\alpha=0 & \Longleftrightarrow No \end{tabular} Projection Bias \\ $\alpha\in(0,1) & \Longleftrightarrow $\mathsf{Projection}$ \end{tabular} Bias \end{tabular}$

Examples:

 \tilde{u} (pie, full|hungry) = $(1 - \alpha) * u$ (pie, full) + $\alpha * u$ (pie, hungry)

 $\tilde{u}(\text{coat}, \text{warm}|\text{cold}) = (1 - \alpha) * u(\text{coat}, \text{warm}) + \alpha * u(\text{coat}, \text{cold})$

Two other issues:

- The person is not aware of the bias (otherwise she could just correct for it).
- Except for these mispredictions, the person's intertemporal preferences are as in discounted utility model (for ease, think δ^x.)

A first type of evidence: underappreciation of the endowment effect.

Loewenstein & Adler (EJ 1995)

Subjects: 27 CMU undergrads & 39 Pittsburgh MBA's.

Procedure:

- All subjects shown a mug, told they'll get one and have the opportunity to sell it for money.
- Half of the subjects predict how much they'd sell it for.
- After a delay, all subjects are given a mug and an opportunity to sell

Construction of the second sec

Loewenstein & Adler (EJ 1995)

Results:

		Prediction	<u>Actual</u>
CMU:	Prediction Control	\$3.73 	\$5.40 \$6.46
Pittsburgh:	Prediction Control	\$3.27	\$4.56 \$4.98

VanBoven, Dunning, & Loewenstein (JPSP 2000)

Study 2: Subjects were 43 Cornell undergraduates.

19 subjects randomly chosen to be "sellers".24 subjects randomly chosen to be "buyers".

Each seller given a coffee mug. Each buyer shown a coffee mug.

Two tasks:

- Elicit people's reservation prices.
- Ask buyers to predict average reservation price of sellers, and ask sellers to predict average reservation price of buyers.

VanBoven, Dunning, & Loewenstein (JPSP 2000)

Results:

	Reservation Price	Prediction for Other Group
Sellers:	\$6.37	\$3.93
Buyers:	\$1.85	\$4.39

A second type of evidence: underappreciation of the effects of hunger.

Read & van Leeuwen (OBHDP 1998)

Subjects were 200 employees at several firms in Amsterdam.

Procedure:

- Each subject asked to choose between a healthy vs. unhealthy snack to be received in one week.
- They varied subjects' expected future hunger and their current hunger.

Read & van Leeuwen (OBHDP 1998)

Results: % of Subjects Choosing Unhealthy Snack

		Future	Hunger
		Hungry	Satiated
Current	Hungry	78%	42%
Hunger	Satiated	56%	26%

Let's use the model of the endowment effect that we used earlier this semester (based on loss aversion).

- (Total Utility) = (Mug Utility) + (Money Utility)
- (Total Utility) = u(c, r) + m

Mug utility is u(c, r) = w(c) + v(c - r), where

$$w(c) = \mu * c$$
 and $v(x) = \left\{ egin{array}{c} arphi x & ext{if } x \geq 0 \ \lambda arphi x & ext{if } x \leq 0. \end{array}
ight.$

13/22

Suppose buy/sell the mug in period 1, and (possibly) consume the mug in periods 1 & 2.

Consumption is:

- $c_1 = c_2 = 1$ if buy or keep.
- $c_1 = c_2 = 0$ if don't buy or sell.

Initial reference point is exogenous:

- $r_1 = 0 \iff$ unendowed (buyers).
- $r_1 = 1 \iff$ endowed (sellers).

Assume $r_2 = c_1$

One can show:

- Sellers should sell iff $P \ge P_S^* \equiv$
- Sellers actually sell iff $P \ge P_S^A \equiv$
- Buyers should buy iff $P \leq P_B^* \equiv$
- Buyers actually buy iff $P \leq P_B^A \equiv$

Some Results:

(1) $p_S^A > p_S^* \& p_B^A > p_B^*$.

People are over-prone to consume goods to which they become accustomed because they underappreciate how they'll adapt — and more generally can lead to incorrect intertemporal utility maximization.

(2) $p_S^A - p_B^A > p_S^* - p_B^*$.

Projection bias magnifies the endowment effect — and more generally can magnify features of true tastes.

- (3) $\hat{p}_{S}^{A} < p_{S}^{A} \& \hat{p}_{B}^{A} > p_{B}^{A}$, where
 - $\hat{p}_{S}^{A} \equiv$ unendowed person's predicted selling price
 - $\hat{p}^{A}_{B} \equiv$ endowed person's predicted buying price
 - Consistent with the evidence on underappreciation of the endowment effect and more generally can lead people to make plans that they don't carry out.

(Discussion courtesy of O'Donoghue)

Underlying environment:

■ A durable good — e.g., a winter coat — yields a utility stream

 $\mu_1, \mu_2, ..., \mu_T.$

These μ's typically vary from day to day in a somewhat random way — for simplicity, let's assume that for all days the expected value of μ_t is μ.

On Day 1, when a person knows μ_1 but not the future μ_t 's, how much is the person willing to pay for this durable good (assuming no discounting)?

Optimal:

$$WTP = \mu_1 + (T-1)ar{\mu}$$

With Projection bias:

$$WTP = \mu_1 + (T-1)[(1-\alpha)\bar{\mu} + \alpha\mu_1]$$

$$= \mu_1 + (T-1)[\bar{\mu} + \alpha(\mu_1 - \bar{\mu})]$$

Hence: If $\mu_1 > \overline{\mu}$ then overprone to buy. If $\mu_1 < \overline{\mu}$ then underprone to buy.

Recall: If $\mu_1 > \bar{\mu}$ then overprone to buy. If $\mu_1 < \bar{\mu}$ then underprone to buy.

<u>One extension</u>: Suppose that you have multiple opportunities to buy the durable good (and suppose that there are limits on your ability to return the good).

Case 1: Suppose $P < T\bar{\mu}$, so you SHOULD buy the good.

■ You end up buying it as long as µ_t ≥ µ on <u>at least one occasion</u>, which is quite likely.

 \implies Under-buying is very unlikely.

Case 2: Suppose $P > T\bar{\mu}$, so you should NOT buy the good.

- Again, you end up buying it as long as µ_t ≥ µ on <u>at least one occasion</u>, which is quite likely.
 - \Longrightarrow Over-buying is very LIKELY.

Recall: If $\mu_1 > \overline{\mu}$ then overprone to buy. If $\mu_1 < \overline{\mu}$ then underprone to buy.

<u>Second extension</u>: Suppose returns are easy — perhaps we can use returns to test for projection bias in field data.

- If μ_t is large, more "over-buying", thus many returns.
- If μ_t is small, more "under-buying", thus few returns.

Conlin, O'Donoghue & Vogelsang (AER 2007)

Look at catalog orders — very easy to return!

Prediction: More returns for orders made on high-valuation days than for orders made on low-valuation days.

Big question: How can we assess whether a person orders on a high-valuation day vs. a low-valuation day?

Our answer: look at orders of winter-clothing items as a function of the weather.

- If order on a cold day, it's likely a high-valuation day.
- If order on a warm day, it's likely a low-valuation day.

Authors conduct precisely this test, and indeed find that the colder the temperature on the day a person orders a winter-clothing item, the more likely the person is to return that item.

22 / 22