Behavioral Economics

Lecture 2: Making Choices over Time Part (f): Utility from Anticipation

Professor Bushong

Based on Loewenstein (EJ 1987)

Motivating experiment: Ask subjects

- (1) their *WTP* for a kiss from a movie star of their choice at date x.
- (2) their *WTP* to avoid a 110-volt shock at date x.

He uses a within-subjects design, and uses x = now, 3 hrs, 24 hrs, 3 days, 1 yr, and 10 yrs.

Motivating Experiment

Let's denote the *WTP* for *c* at date *x* by WTP(c, x).

Under the "standard" discounted-utility interpretation,

$$WTP(c, x) = D(x) * v(c)$$

- v(c) is the instantaneous utility from c.
- **D**(x) is discounting associated with delay x.

Normalizing D(0) = 1, this implies:

$$\frac{WTP(c,x)}{WTP(c,0)} = \frac{D(x)v(c)}{D(0)v(c)} = D(x)$$

Motivating Experiment: Results

Professor Bushong

Interpretation: Anticipatory Utility

Loewenstein interprets as evidence of "anticipatory utility":

- Leading up to the kiss, you get positive utility from anticipating it; hence, you may prefer to delay the kiss so that you can properly anticipate it.
- Leading up to the shock, you get negative utility from anticipating it; hence, you may prefer to accelerate the shock so that you do NOT need to anticipate it.

A Model with Utility from Anticipation

A State

Instantaneous utility in period t given by

$$u(c_t, c_{t+1}) = v(c_t) + w^A(c_{t+1}).$$

v(c_t) is utility from current consumption.
 w^A(c_{t+1}) is utility from anticipating future consumption.
 In period 1, the person chooses (c₁, c₂, ...) to maximize

$$U^1 \equiv \sum_{\tau=1}^{\infty} \delta^{\tau-1} u(c_{\tau}, c_{\tau+1}).$$

What is $w^A(c_{t+1})$? Let's assume

$$w^{A}(c_{t+1}) = \varphi * v(c_{t+1})$$

■ Anticipatory utility is proportional to consumption utility, where ϕ < 1 reflects

Professor Bushong

Example: The "Kiss"

Recall:

$$u(c_t, c_{t+1}) = v(c_t) + \varphi * v(c_{t+1})$$

Period-1 intertemporal utility of "kiss":

- Kiss in period 1: v(kiss)
- Kiss in period 2: $\varphi * v(kiss) + \delta * v(kiss)$
- Kiss in period 3: $0 + \delta * \phi * v(kiss) + \delta^2 * v(kiss)$

If $\varphi + \delta < 1$, optimal to have kiss now (in period 1).

If $\varphi + \delta > 1$, optimal to have kiss in near future (in period 2).

More Examples of Anticipatory Utility

Suppose you're thinking about going on vacation:

- For a long time, you thought probably no time for a 3-day vacation.
- Then one day find out that probably will have time off (80%).
 - ... and then confirmed as 100% likely when it happens.
- Belief evolution:

More Examples of Anticipatory Utility

As with other parts of this course, we'll discuss utility in time.

- That is, we will talk about real-time "happiness" without choice.
- As before, this will have implications for choice.

So let's consider the utility of a person who has the beliefs from previous slide. Could be:

 φ

Funded

Or could be:

Or could be (my personal vote):

So what?

- Why care about the timing or reason for enjoying a vacation?
- Often: We don't. All captured by u(vacation).
 - Reduced form probably best for "remembered utility".

But can matter for various reasons. Three are:

- Use direct happiness data if and only if our theories specify timing of utility.
 - (Not a topic of this course, but interesting to think about).
- Beliefs/information matter even when behavior is unaffected.
- Affects choice: including time inconsistency, commitment, etc.

11/23

Anticipatory Utility and Choice

Suppose planning vacation:

- Have anticipatory preferences for holiday-making only.
- Club Cococabana holiday package, *total* anticipatory utility plus consumption and remembered utility well worth \$10,000.
- But without anticipatory utility, *not* nearly worth it.
- Can/must buy months in advance.

Situation A: All but \$50 is fully refundable if 24 hours in advance. What would a sophisticated person do?

- By backwards induction, we know she **will cancel** the vacation at the last minute.
- \Rightarrow She would not buy the package, then would not go on the vacation.

Tale of the Sophisticate

If sophisticated and have the specified preferences

- You won't sign up under Situation A,
 - because you'll cancel, and know you'll cancel.
- Won't get anticipatory utility after all.

Note here that our definition of *sophisticated* is:

- Dynamically optimal, anticipating correctly own conduct.
- But **not** the beliefs that make you happiest.
- With belief-based preferences, the two are *different*.

Situation B: Contract allows no refunds.

- What would a person do?
- Buy package? Go on vacation?
 - She would buy the package, and then she would go on the vacation.

Predictions in A&B **do/do not** (cross out one) violate classical assumptions about preferences?

- This **does** violate classical axioms/assumptions about preferences.
 - Chose plan "No Buy" from {No Buy, Go, Cancel} in Situation A.
 - "Go" from {No Buy, Go} in Situation B.
 - (And worse off in Situation A)
- This should/should not (cross out one) freak you out?
 - This **should not** freak you out.

Violating such an axiom should/should not (cross out one) thrill you?

It **should not** thrill you.

Instead be interested in realism, insight, and importance of assumptions. (Not sure of realism, importance this example)

Professor Bushong

Behavioral Economics

Consumption & Savings with Anticipatory Preferences

Setting and Preferences

Yugi will live for 3 periods, has \$*Y* to spend over that time (no interest), seeks to maximize his (undiscounted) lifetime utility $U^1 = u_1 + u_2 + u_3$.

- In period *t*, "consumption utility" m_t that depends on c_t .
- Also gets utility from anticipating his future consumption utility.
- Why from anticipating solely his future consumption utility?
 - Why not also from future anticipatory utility?
 - We'll ignore.

Belief-Based Consumption & Savings

Attempt to model this:

$$u_1 = m(c_1) + \varphi[m(c_2) + m(c_3)]$$

$$u_2 = m(c_2) + \varphi[m(c_3)]$$

$$u_3 = m(c_3)$$

• where $\varphi \ge 0$ is relative concern for anticipatory utility.

Question: what is incoherent about such preferences?

■ u_1 cannot depend on c_2 or c_3 . Only **beliefs** about c_2 , c_3 .

Belief-Based Consumption & Savings Redux

2nd attempt to model:

$$u_1 = m(c_1) + \varphi E_1 \{ m(c_2) + m(c_3) \}$$

$$u_2 = m(c_2) + \varphi E_2\{m(c_3)\}$$

 $\blacksquare u_3 = m(c_3)$

where $E_t \{m(c_\tau)\}$ is period-*t* expectations of period- τ consumption.

Would want more complete version of this if there is uncertainty.

When beliefs deterministic, shorthand:

$$u_1 = m(c_1) + \varphi[m(\tilde{c}_2^1) + m(\tilde{c}_3^1)]$$

$$u_2 = m(c_2) + \varphi[m(\tilde{c}_3^2)]$$

$$u_3 = m(c_3)$$

where \tilde{c}_{τ}^{t} are Yugi's period-*t* beliefs about period- τ consumption.

What will Yugi do?

Professor Bushong

Solving the Model

Candidate solution: Yugi solves

 $Max_{c_1,c_2} = m(c_1) + (1+\varphi)m(c_2) + (1+2\varphi)m(Y-c_1-c_2).$

- E.g., if $m(x) = \ln(x)$, then: • $c_1^{**} = \frac{1}{3+3\varphi}Y$, $c_2^{**} = \frac{1+\varphi}{3+3\varphi}Y$, $c_3^{**} = \frac{1+2\varphi}{3+3\varphi}Y$
- How do these depend on φ ?
 - **Respectively** decreasing, independent of, and increasing in φ .
 - Intuition?

If
$$\varphi = 1$$
, then:
 $c_1^{**} = \frac{3}{18}Y$, $c_2^{**} = \frac{6}{18}Y$, $c_3^{**} = \frac{9}{18}Y$

Fuer

Is this what Yugi will do?

Claim: We have under-specified features of the environment.

- We need to say when Yugi is making (committed) choices.
- Situation 1:
 - Yugi fully rational and can commit, then yes.
- Situation 2:
 - Yugi fully rational and *cannot* commit, then only c_1^* is right.

E.g., if $\pmb{\varphi}=\pmb{1},$ then \dots

	Can Commit	Cannot Commi
<i>C</i> ₁ *	$\frac{3}{18}Y$	$\frac{3}{18}Y$
<i>c</i> ₂ *	$\frac{6}{18}Y$	$\frac{5}{18}Y$
c_3^*	$\frac{9}{18}Y$	$\frac{10}{18}Y$

What is interesting?

- Consumes more period 2 with commitment than without!
- Why does commitment increase period-2 consumption?
 - Because assumed anticipation is over future consumption utility alone (and not future anticipatory utility), happier looking forward to smoothed consumption than back-weighted consumption.
 - But in period 2, this is no longer a consideration.

Reasons increased consumption profiles besides anticipatory utility?

- Precautionary savings.
- Backward-looking habit formation.

Reasons we may rarely see increasing consumption?

- Present bias: consumption smoothing may be self-control problem.
- Because: anticipatory model isn't quite right.
- Reminder: models should own *all* their implications
 - Anticipatory utility makes some strange ones.

21/23

Stepping (well) outside the rational framework:

- What if Yugi can fool himself into believing lifetime income *Y* is something else?
- What might he tell himself?
 - Choose to be optimistic to consume anticipation.
 - But trades off against induced under-saving.
 - See, e.g., Brunnermeier and Parker (2005).
- But ... what if Yugi can tell himself other stories?
 - Like that he earns lots of interest on his savings?
 - Or wonderful afterlife if maximize true lifetime utility.
- Fundamental Theorem of Optimal Distortion of Anticipatory Prefs:
 - If no restrictions, then choose beliefs to maximize **both** anticipatory preferences and "direct-consumption" utility.

More generally, models (that many of us have tried) for "motivated" *willful* distortion of beliefs, if not Bayesian (as about to see!) run into problems...

- Psychological realism?
- $\Rightarrow\,$ Need a model of what are the limits to distortions.