Problem Set 6a

EC404 Spring 2024

[Due, with Part b, on April 18th]

Question 1:

This question asks you to extend the medical-test example from class. Suppose there is a medical condition that afflicts 20% of the population. There is a test for this condition, and the reliability of this test can be characterized as follows:

- false-positive rate $=10 \%$ - for those who do not have the condition, 10% will test positive.
- false-negative rate $=5 \%$ - for those who have the condition, 5% will test negative.
(a) If you receive a positive test result, what is the likelihood that you have the condition? If you receive a negative test result, what is the likelihood that you do not have the condition?
(b) Repeat part (a), except now assume that the false-positive rate is 5\% and the false-negative rate is 10%.

Question 2:

Suppose there are two types of dice, red dice and blue dice. Each red die has $4 H$'s and 2 M 's, whereas each blue die has $2 H$'s and $4 M$'s. The proportion of all dice that are red is 80%.

For each of the scenarios below, discuss whether the person's intuitive judgment is consistent with (i) base-rate neglect, (ii) over-inference from small samples, and (iii) conservatism.
(a) A person is told that a die was rolled three times and came up $M M H$. When asked the likelihood that the die is red, the person responds $1 / 2$.
(b) A person is told that a die was rolled three times and came up $H M H$. When asked the likelihood that the die is red, the person responds $9 / 10$.
(c) A person is told that a die was rolled ten times and came up MMHHMHMHHH. When asked the likelihood that the die is red, the person responds $17 / 20$.

Question 3:

Suppose there are two types of coins, heads-biased coins and tails-biased coins. A heads-biased coin has a $3 / 4$ probability of a heads, while a tails-biased coin has a $1 / 4$ probability of heads. The proportion of all coins that are heads-biased is $1 / 7$.

Suppose that we flip a coin twice and it comes up $H H$.
(a) For a standard Bayesian information processor:
(i) What is the person's posterior probability that the coin is heads-biased?
(ii) What is the person's forecast for a third flip being H ?
(b) For an $(N=8)$-Freddy (as defined in class):
(i) What is the person's posterior probability that the coin is heads-biased?
(ii) What is the person's forecast for a third flip being H ?
(c) Repeat parts (a) and (b) when the proportion of all coins that are heads-biased is 6/7.
(d) How do Freddy's forecasts compare to a Bayesian's forecasts? Provide some intuition for your conclusions.

