Lecture 4B: Non-Bayesian Information Processing

EC 404: Behavioral Economics
Professor: Ben Bushong

April 9, 2024

An Alternative Model: The Law of Small Numbers

An Alternative Model: The Law of Small Numbers Based on Rabin (QJE 2002)

Assumes one particular misconception of randomness: People act as if they believe recent draws of one outcome increase the odds of the next draw being a different outcome.

Specifically, an N-Freddy acts as if he believes that probabilistic events are drawn from an "urn" with N balls without replacement specifically, he believes that the ball just drawn is not in the "urn" for the current draw.

An Example

Suppose ($N=12$)-Freddy faces a die with 4 H's and 2 M's.
On the first roll: $\operatorname{Pr}(H)=2 / 3$

On the second roll:

- If first roll is H, then $\operatorname{Pr}(H)=7 / 11<2 / 3$
- If first roll is M, then $\operatorname{Pr}(H)=8 / 11>2 / 3$

More generally:

- If previous roll is H, then $\operatorname{Pr}(H)=$?
- If previous roll is M, then $\operatorname{Pr}(H)=$?

Formal Assumptions

Suppose the objective probability of outcome x is p.
On the first draw:

- N-Freddy believes $\operatorname{Pr}(x)=p$.

On the second draw:

- If first draw is x, N-Freddy believes $\operatorname{Pr}(x)=\frac{p N-1}{N-1}$.
- If first draw NOT x, N-Freddy believes $\operatorname{Pr}(x)=\frac{p N}{N-1}$.

More generally, on $n^{\text {th }}$ draw (where $n \geq 2$):

- If $(n-1)^{\text {st }}$ draw is x, N-Freddy believes $\operatorname{Pr}(x)=\frac{p N-1}{N-1}$.
- If $(n-1)^{\text {st }}$ draw NOT x, N-Freddy believes $\operatorname{Pr}(x)=\frac{p N}{N-1}$.

A nice feature: The larger is N, the smaller is the bias (and as $N \rightarrow \infty$ an N-Freddy becomes a Bayesian).

Implication 1

Implication 1: An N-Freddy will exhibit the gambler's fallacy.

- If there is a known objective probability, then an N-Freddy will act as if he believes a recent draw of one outcome increases the odds of the next draw being a different outcome (nearly tautological).

Implication 2

Implication 2: An N-Freddy will exhibit over-inference from small samples.

Recall Example C: Suppose there are two dice, a red one and a blue one. On the red die, there are 4 H's and 2 M 's, whereas on the blue die, there are 2 H's and 4 M's. I flip a fair coin, and if it comes up heads I use the red die, and if it comes up tails I use the blue die (and you cannot observe the coin flip). I then roll that die twice. If the die comes up HH , what is the likelihood that I'm rolling the red die?

For a Bayesian: $\quad q_{0}($ red $)=q_{0}($ blue $)=1 / 2$.

$$
\begin{gathered}
\gamma(H H \mid \text { red })=4 / 9 \text { and } \gamma(H H \mid \text { blue })=1 / 9 \\
q_{1}(\text { red } \mid H H)=\frac{\gamma(H H \mid \text { red }) q_{0}(\text { red })}{\gamma(H H \mid \text { red }) q_{0}(\text { red })+\gamma(H H \mid \text { blue }) q_{0}(\text { blue })}=4 / 5
\end{gathered}
$$

Implication 2

For an ($N=12$)-Freddy:

- $q_{0}($ red $)=q_{0}($ blue $)=1 / 2$ (no change).
- $\gamma(H H \mid$ red $)=2 / 3 * 7 / 11=14 / 33$
- $\gamma(H H \mid$ blue $)=1 / 3 * 3 / 11=1 / 11$
- Now apply Bayes' Rule:

$$
q_{1}(\text { red } \mid H H)=\frac{\gamma(H H \mid \text { red }) q_{0}(\text { red })}{\gamma(H H \mid \text { red }) q_{0}(\text { red })+\gamma(H H \mid \text { blue }) q_{0}(\text { blue })}=
$$

Intuition: The law of small numbers makes Freddy think that HH is less likely to occur than it actually is; but since this reduction is larger for the die less likely to roll $H H$ (i.e., for the blue die), Freddy will update too much toward the die more likely to roll HH (i.e., toward the red die).

Implication 3

Implication 3: An N-Freddy will exhibit the hot-hand fallacy.

Implication 3

A Simplified Example:

- Suppose that in each game a player takes two shots. In reality, the player's hit rate is always 50%.

Consider an $(N=8)$-Freddy who entertains the notion that the player might have hot and cold games. Specifically, for any given game, he believes:

- With probability q, the player's hit rate is 75%.
- With probability q, the player's hit rate is 25%.
- With probability $1-2 q$, the player's hit rate is 50%.

Initially, Freddy doesn't know q, but Freddy attempts to infer q from watching the player's performance across a large number of games. What will Freddy infer?

Note: Let's assume that Freddy's processing reflects that there is a new urn at the start of every game.

Implication 3

What does Freddy actually see?
Given that the true hit rate is always 50%, after observing a "large" sample, Freddy will see pairs in the following proportions:

- $(H, H)=1 / 4$
- $(M, M)=1 / 4$
- (H, M) or $(M, H)=1 / 2$

Implication 3

What does Freddy expect to see?
Recall that Freddy believes:

- With probability q, the player's hit rate is 75%.
- With probability q, the player's hit rate is 25%.
- With probability $1-2 q$, the player's hit rate is 50%.

Hence, as a function of q, our $(N=8)$-Freddy expects to see pairs in the following proportions:

- $(H, H)=3 / 14+q / 7$
- $(M, M)=3 / 14+q / 7$
- (H, M) or $(M, H)=8 / 14-2 q / 7$

Implication 3

What does Freddy infer about q ?
Recall: Freddy actually sees:

- $(H, H)-1 / 4$
- $(M, M)-1 / 4$
- (H, M) or $(M, H)-1 / 2$

Recall: Freddy expects to see:

- $(H, H)-3 / 14+q / 7$
- $(M, M)-3 / 14+q / 7$
- (H, M) or $(M, H)-8 / 14-2 q / 7$

Hence, an $N=8$ Freddy's estimate q will be the q such that \ldots

Implication 3

Even though the player does NOT have a hot hand, Freddy will come to believe that the player is "hot" in 25% of games, "cold" in 25% of games, and "average" in 50% of games.

Intuition: The law of small numbers makes Freddy think that a 50\% shooter is less likely to have $H H$ or $M M$ games than the player actually is. Hence, when Freddy sees a lot of $H H$ and $M M$ games, Freddy is forced to conclude that the player must be having hot and cold games.

