Lecture 2 g : Choice over Time Projection Bias

EC 404: Behavioral Economics
Professor: Ben Bushong

March 22, 2024

Introduced by Loewenstein, O'Donoghue, \& Rabin (QJE 2003)
"Projection Bias":

- People understand qualitatively the directions in which their tastes change, but they systematically underappreciate the magnitudes of these changes.

A Model of Projection Bias

Step 1: A Model of Changing Tastes

To describe changes in tastes, we use "state-dependent utility":

- The instantaneous utility in period t is $u\left(c_{t}, s_{t}\right)$, where c_{t} is period- t consumption and s_{t} is the period- t "state".

Two examples:

- u (pie,hungry) $>u$ (pie,full)
- $u($ coat,cold $)>u($ coat,warm $)$

A Model of Projection Bias

Step 2: Predictions of Future Tastes

Suppose you're predicting tastes given future state s, but this prediction is potentially contaminated by your current state s^{\prime}.

- True tastes will be $u(c, s)$.
- Current tastes are $u\left(c, s^{\prime}\right)$.
- Let $\tilde{u}\left(c, s \mid s^{\prime}\right)$ denote the prediction.

Example: Suppose you're predicting what your utility from a slice of pie will be when you're full, but this prediction is potentially contaminated by the fact that you're currently hungry.

- True tastes will be u (pie, full).
- Current tastes are u (pie, hungry).
- ũ (pie, full|hungry) denotes your prediction.

A Model of Projection Bias

Step 2: Predictions of Future Tastes (cont)
Standard model: $\tilde{u}\left(c, s \mid s^{\prime}\right)=u(c, s)$.

- The standard economic assumption is that people's predictions are accurate.

Two examples:

- \tilde{u} (pie, full \mid hungry $)=u$ (pie, full)
- $\tilde{u}($ coat, warm \mid cold $)=u($ coat, warm $)$
"Projection bias" means $\tilde{u}\left(c, s \mid s^{\prime}\right)$ in between $u(c, s) \& u\left(c, s^{\prime}\right)$.
Two examples:
- u (pie, full) $<\tilde{u}$ (pie, full|hungry) $<u$ (pie, hungry)
- $u($ coat, warm $)<\tilde{u}($ coat, warm \mid cold $)<u($ coat, cold $)$

A Model of Projection Bias

Step 3: A Simple Formulation

A person has "simple projection bias" if

$$
\tilde{u}\left(c, s \mid s^{\prime}\right)=(1-\alpha) * u(c, s)+\alpha * u\left(c, s^{\prime}\right) .
$$

- $\alpha=0 \Longleftrightarrow$ No Projection Bias
- $\alpha \in(0,1) \Longleftrightarrow$ Projection Bias

Examples:

$$
\tilde{u}(\text { pie, full|hungry })=(1-\alpha) * u(\text { pie, full })+\alpha * u(\text { pie, hungry })
$$

$$
\tilde{u}(\text { coat }, \text { warm } \mid \text { cold })=(1-\alpha) * u(\text { coat }, \text { warm })+\alpha * u(\text { coat }, \text { cold })
$$

A Model of Projection Bias

Two other issues:

- The person is not aware of the bias (otherwise she could just correct for it).
- Except for these mispredictions, the person's intertemporal preferences are as in discounted utility model (for ease, think δ^{x}.)

Evidence of Projection Bias

A first type of evidence: underappreciation of the endowment effect.

Loewenstein \& Adler (EJ 1995)
Subjects: 27 CMU undergrads \& 39 Pittsburgh MBA's.
Procedure:

- All subjects shown a mug, told they'll get one and have the opportunity to sell it for money.
- Half of the subjects predict how much they'd sell it for.
- After a delay, all subjects are given a mug and an opportunity to sell

Evidence of Projection Bias

Loewenstein \& Adler (EJ 1995)
Results:

Prediction Actual

CMU:	Prediction Control	$\$ 3.73$	$\$ 5.40$
			$\$ 6.46$
Pittsburgh:	Prediction Control	$\$ 3.27$	$\$ 4.56$
			$\$ 4.98$

Evidence of Projection Bias

VanBoven, Dunning, \& Loewenstein (JPSP 2000)

Study 2: Subjects were 43 Cornell undergraduates.
19 subjects randomly chosen to be "sellers".
24 subjects randomly chosen to be "buyers".
Each seller given a coffee mug.
Each buyer shown a coffee mug.
Two tasks:

- Elicit people's reservation prices.
- Ask buyers to predict average reservation price of sellers, and ask sellers to predict average reservation price of buyers.

Evidence of Projection Bias

VanBoven, Dunning, \& Loewenstein (JPSP 2000)
Results:

	Reservation Price		
	$\$ 6.37$		$\$ 3.93$ Buyers:
Sellers:	$\$ 1.85$	$\$ 4.39$	

Evidence of Projection Bias

A second type of evidence: underappreciation of the effects of hunger.

Read \& van Leeuwen (OBHDP 1998)
Subjects were 200 employees at several firms in Amsterdam.
Procedure:

- Each subject asked to choose between a healthy vs. unhealthy snack to be received in one week.
- They varied subjects' expected future hunger and their current hunger.

Evidence of Projection Bias

Read \& van Leeuwen (OBHDP 1998)
Results: \% of Subjects Choosing Unhealthy Snack

		Future Hunger	
		Hungry	Satiated
Current	Hungry	78\%	42\%
Hunger	Satiated	56\%	26\%

Application: Projection Bias \& The Endowment Effect

Let's use the model of the endowment effect that we used earlier this semester (based on loss aversion).

- $($ Total Utility $)=($ Mug Utility $)+($ Money Utility $)$
- (Total Utility $)=u(c, r) \quad+\quad m$

Mug utility is $u(c, r)=w(c)+v(c-r)$, where

$$
w(c)=\mu * c \quad \text { and } \quad v(x)=\left\{\begin{array}{cc}
\phi x & \text { if } x \geq 0 \\
\lambda \phi x & \text { if } x \leq 0
\end{array}\right.
$$

Application: Projection Bias \& The Endowment Effect

Suppose buy/sell the mug in period 1 , and (possibly) consume the mug in periods $1 \& 2$.

Consumption is:

- $c_{1}=c_{2}=1$ if buy or keep.
- $c_{1}=c_{2}=0$ if don't buy or sell.

Initial reference point is exogenous:

- $r_{1}=0 \Longleftrightarrow$ unendowed (buyers).
- $r_{1}=1 \Longleftrightarrow$ endowed (sellers).

Assume $r_{2}=c_{1}$

Application: Projection Bias \& The Endowment Effect

One can show:

- Sellers should sell iff $P \geq P_{S}^{*} \equiv$
- Sellers actually sell iff $P \geq P_{S}^{A} \equiv$
- Buyers should buy iff $P \leq P_{B}^{*} \equiv$
- Buyers actually buy iff $P \leq P_{B}^{A} \equiv$

Application: Projection Bias \& The Endowment Effect

Some Results:
(1) $p_{S}^{A}>p_{S}^{*} \& p_{B}^{A}>p_{B}^{*}$.

- People are over-prone to consume goods to which they become accustomed because they underappreciate how they'll adapt - and more generally can lead to incorrect intertemporal utility maximization.
(2) $p_{S}^{A}-p_{B}^{A}>p_{S}^{*}-p_{B}^{*}$.
- Projection bias magnifies the endowment effect - and more generally can magnify features of true tastes.

Application: Projection Bias \& The Endowment Effect

(3) $\hat{p}_{S}^{A}<p_{S}^{A} \& \hat{p}_{B}^{A}>p_{B}^{A}$, where
$\hat{p}_{S}^{A} \equiv$ unendowed person's predicted selling price
$\hat{p}_{B}^{A} \equiv$ endowed person's predicted buying price

- Consistent with the evidence on underappreciation of the endowment effect - and more generally can lead people to make plans that they don't carry out.

Application: Projection Bias and Durable Goods

(Discussion courtesy of O'Donoghue)
Underlying environment:

- A durable good - e.g., a winter coat - yields a utility stream

$$
\mu_{1}, \mu_{2}, \ldots, \mu_{T}
$$

- These μ 's typically vary from day to day in a somewhat random way - for simplicity, let's assume that for all days the expected value of μ_{t} is $\bar{\mu}$.

Application: Projection Bias and Durable Goods

On Day 1, when a person knows μ_{1} but not the future μ_{t} 's, how much is the person willing to pay for this durable good (assuming no discounting)?

- Optimal:

$$
W T P=\mu_{1}+(T-1) \bar{\mu}
$$

- With Projection bias:

$$
\begin{aligned}
W T P & =\mu_{1}+(T-1)\left[(1-\alpha) \bar{\mu}+\alpha \mu_{1}\right] \\
& =\mu_{1}+(T-1)\left[\bar{\mu}+\alpha\left(\mu_{1}-\bar{\mu}\right)\right]
\end{aligned}
$$

Hence:
If $\mu_{1}>\bar{\mu}$ then overprone to buy. If $\mu_{1}<\bar{\mu}$ then underprone to buy.

Application: Projection Bias and Durable Goods

Recall: If $\mu_{1}>\bar{\mu}$ then overprone to buy.
If $\mu_{1}<\bar{\mu}$ then underprone to buy.
One extension: Suppose that you have multiple opportunities to buy the durable good (and suppose that there are limits on your ability to return the good).

Case 1: Suppose $P<T \bar{\mu}$, so you SHOULD buy the good.

- You end up buying it as long as $\mu_{t} \geq \bar{\mu}$ on at least one occasion, which is quite likely.
\Longrightarrow Under-buying is very unlikely.
Case 2: Suppose $P>T \bar{\mu}$, so you should NOT buy the good.
- Again, you end up buying it as long as $\mu_{t} \geq \bar{\mu}$ on at least one occasion, which is quite likely.
\Longrightarrow Over-buying is very LIKELY.

Application: Projection Bias and Durable Goods

Recall: If $\mu_{1}>\bar{\mu}$ then overprone to buy.
If $\mu_{1}<\bar{\mu}$ then underprone to buy.

Second extension: Suppose returns are easy - perhaps we can use returns to test for projection bias in field data.

- If μ_{t} is large, more "over-buying", thus many returns.
- If μ_{t} is small, more "under-buying", thus few returns.

Application: Projection Bias and Durable Goods

Conlin, O'Donoghue \& Vogelsang (AER 2007)
Look at catalog orders - very easy to return!
Prediction: More returns for orders made on high-valuation days than for orders made on low-valuation days.

Big question: How can we assess whether a person orders on a high-valuation day vs. a low-valuation day?

Our answer: look at orders of winter-clothing items as a function of the weather.

- If order on a cold day, it's likely a high-valuation day.
- If order on a warm day, it's likely a low-valuation day.

Authors conduct precisely this test, and indeed find that the colder the temperature on the day a person orders a winter-clothing item, the more likely the person is to return that item.

