Lecture 4f: Choice over Time Anticipatory Utility and Beliefs

EC 404: Behavioral Economics
Professor: Ben Bushong

March 22, 2024

Motivating Experiment

Based on Loewenstein (EJ 1987)

Motivating experiment: Ask subjects

- (1) their WTP for a kiss from a movie star of their choice at date x.
- (2) their WTP to avoid a 110 -volt shock at date x.

He uses a within-subjects design, and uses $x=$ now, 3 hrs, 24 hrs, 3 days, 1 yr , and 10 yrs .

Motivating Experiment

Let's denote the WTP for c at date x by $W T P(c, x)$.
Under the "standard" discounted-utility interpretation,

$$
W T P(c, x)=D(x) * v(c)
$$

- $v(c)$ is the instantaneous utility from c.
- $D(x)$ is discounting associated with delay x.

Normalizing $D(0)=1$, this implies:

$$
\frac{W T P(c, x)}{W T P(c, 0)}=\frac{D(x) v(c)}{D(0) v(c)}=D(x)
$$

Motivating Experiment: Results

Interpretation: Anticipatory Utility

Loewenstein interprets as evidence of "anticipatory utility":

- Leading up to the kiss, you get positive utility from anticipating it; hence, you may prefer to delay the kiss so that you can properly anticipate it.
- Leading up to the shock, you get negative utility from anticipating it; hence, you may prefer to accelerate the shock so that you do NOT need to anticipate it.

A Model with Utility from Anticipation

Instantaneous utility in period t given by

$$
u\left(c_{t}, c_{t+1}\right)=v\left(c_{t}\right)+w^{A}\left(c_{t+1}\right)
$$

- $v\left(c_{t}\right)$ is utility from current consumption.
- $w^{A}\left(c_{t+1}\right)$ is utility from anticipating future consumption.

In period 1, the person chooses $\left(c_{1}, c_{2}, \ldots\right)$ to maximize

$$
U^{1} \equiv \sum_{\tau=1}^{\infty} \delta^{\tau-1} u\left(c_{\tau}, c_{\tau+1}\right)
$$

What is $w^{A}\left(c_{t+1}\right)$? Let's assume

$$
w^{A}\left(c_{t+1}\right)=\phi * v\left(c_{t+1}\right)
$$

- Anticipatory utility is proportional to consumption utility, where $\phi<1$ reflects the "vividness".

Example: The "Kiss"

Recall:

$$
u\left(c_{t}, c_{t+1}\right)=v\left(c_{t}\right)+\phi * v\left(c_{t+1}\right)
$$

Period-1 intertemporal utility of "kiss":

- Kiss in period 1: v(kiss)
- Kiss in period 2: $\phi * v$ (kiss) $+\delta * v$ (kiss)
- Kiss in period 3: $0+\delta * \phi * v$ (kiss) $+\delta^{2} * v$ (kiss)

If $\phi+\delta<1$, optimal to have kiss now (in period 1).
If $\phi+\delta>1$, optimal to have kiss in near future (in period 2).

More Examples of Anticipatory Utility

Suppose you're thinking about going on vacation:

- For a long time, you thought probably no time for a 3-day vacation.
- Then one day find out that probably will have time off (80%). \ldots and then confirmed as 100% likely when it happens.
- Belief evolution:

More Examples of Anticipatory Utility

As with other parts of this course, we'll discuss utility in time.

- That is, we will talk about real-time "happiness" without choice.

This isn't radical, even though it might seem even farther from mainstream. Stay calm.

- As before, this will have implications for choice.

So let's consider the utility of a person who has the beliefs from previous slide. Could be:

[^0]
Belief-Based Utility

Or could be:

Or could be:

Belief-Based Utility

Or could be (my personal vote):

Belief-Based Utility

So what?

- Why care about the timing or reason for enjoying a vacation?
- Often: We don't. All captured by u (vacation).
- Reduced form probably best for "remembered utility".

But can matter for various reasons. Three are:

- Use direct happiness data if and only if our theories specify timing of utility.
- (Not a topic of this course, but interesting to think about).
- Beliefs/information matter even when behavior is unaffected.
- Affects choice: including time inconsistency, commitment, etc.

Belief-Based Utility

Suppose planning vacation:

- Have anticipatory preferences for holiday-making only.
- Club Cococabana holiday package, total anticipatory utility plus consumption and remembered utility well worth $\$ 10,000$.
- But without anticipatory utility, not nearly worth it.
- Can/must buy months in advance.

Situation A: All but $\$ 50$ is fully refundable if 24 hours in advance.

- What would a fully rational (sophisticated) person do?
- She would/would not (cross out one) buy the package, and then she would/would not (cross out one) go on the vacation.
- She would/would not (cross out one) buy the package, and then she would not go on the vacation.
\Rightarrow She would not buy the package, then would not go on the vacation.

Belief-Based Utility

If fully rational and have the specified preferences

- You won't sign up under Situation A,
- because you'll cancel, and know you'll cancel.
- Won't get anticipatory utility after all.
"Fully rational" defined (or, sophisticated):
- Dynamically optimal, anticipating correctly own conduct.
- But not the beliefs that make you happiest.
- With belief-based preferences, the two are different.

Situation B: Contract allows no refunds.

- What would a person do?
- Buy package? Go on vacation?
- She would buy the package, and then she would go on the vacation.

Belief-Based Utility

Predictions in A\&B do/do not (cross out one) violate classical assumptions about preferences?

- This does violate classical axioms/assumptions about preferences.
- Chose plan "No Buy" from \{No Buy, Go, Cancel\} in Situation A.
- "Go" from \{No Buy, Go\} in Situation B.
- (And worse off in Situation A)

This should/should not (cross out one) freak you out?

- This should not freak you out.

Violating such an axiom should/should not (cross out one) thrill you?

- It should not thrill you.

Instead be interested in realism, insight, and importance of assumptions.
(Not sure of realism, importance this example)

Belief-Based Utility

Consumption \& Savings with Anticipatory Preferences

Setting and Preferences

Yugi will live for 3 periods, has $\$ Y$ to spend over that time (no interest), seeks to maximize his (undiscounted) lifetime utility $U^{1}=u_{1}+u_{2}+u_{3}$.

- In period t, "consumption utility" m_{t} that depends on c_{t}.
- Also gets utility from anticipating his future consumption utility.
- Why from anticipating solely his future consumption utility?
- Why not also from future anticipatory utility?
- We'll ignore.

Belief-Based Utility

Attempt to model this:

$$
\begin{aligned}
& u_{1}=m\left(c_{1}\right)+\phi\left[m\left(c_{2}\right)+m\left(c_{3}\right)\right] \\
& u_{2}=m\left(c_{2}\right)+\phi\left[m\left(c_{3}\right)\right] \\
& u_{3}=m\left(c_{3}\right)
\end{aligned}
$$

- where $\phi \geq 0$ is relative concern for anticipatory utility.

Question: what is incoherent about such preferences?
$-u_{1}$ cannot depend on c_{2} or c_{3}. Only beliefs about c_{2}, c_{3}.

Belief-Based Utility

2nd attempt to model:

- $u_{1}=m\left(c_{1}\right)+\phi E_{1}\left\{m\left(c_{2}\right)+m\left(c_{3}\right)\right\}$
- $u_{2}=m\left(c_{2}\right)+\phi E_{2}\left\{m\left(c_{3}\right)\right\}$
- $u_{3}=m\left(c_{3}\right)$
where $E_{t}\left\{m\left(c_{\tau}\right)\right\}$ is period- t expectations of period $-\tau$ consumption.
- Would want more complete version of this if there is uncertainty.

When beliefs deterministic, shorthand:

- $u_{1}=m\left(c_{1}\right)+\phi\left[m\left(\widetilde{c}_{2}^{1}\right)+m\left(\widetilde{c}_{3}^{1}\right)\right]$
- $u_{2}=m\left(c_{2}\right)+\phi\left[m\left(\tilde{c}_{3}^{2}\right)\right]$
- $u_{3}=m\left(c_{3}\right)$
where \widetilde{c}_{τ}^{t} are Yugi's period- t beliefs about period- τ consumption.
- What will Yugi do?

Belief-Based Utility

Candidate solution: Yugi solves
$\operatorname{Max}_{c_{1}, c_{2}}=m\left(c_{1}\right)+(1+\phi) m\left(c_{2}\right)+(1+2 \phi) m\left(Y-c_{1}-c_{2}\right)$.

- E.g., if $m(x)=\ln (x)$, then:
- $c_{1}^{* *}=\frac{1}{3+3 \phi} Y, \quad c_{2}^{* *}=\frac{1+\phi}{3+3 \phi} Y, \quad c_{3}^{* *}=\frac{1+2 \phi}{3+3 \phi} Y$
- How do these depend on ϕ ?
- Respectively decreasing, independent of, and increasing in ϕ.
- Intuition?
- If $\phi=1$, then:
- $c_{1}^{* *}=\frac{3}{18} Y, \quad c_{2}^{* *}=\frac{6}{18} Y, \quad c_{3}^{* *}=\frac{9}{18} Y$

Belief-Based Utility

Is this what Yugi will do?
Claim: We have under-specified features of the environment.

- We need to say when Yugi is making (committed) choices.
- Situation 1 :
- Yugi fully rational and can commit, then yes.
- Situation 2:
- Yugi fully rational and cannot commit, then only c_{1}^{*} is right.
E.g., if $\phi=1$, then \ldots

Belief-Based Utility

Can Commit Cannot Commit

c_{1}^{*}	$\frac{3}{18} Y$	$\frac{3}{18} Y$
c_{2}^{*}	$\frac{6}{18} Y$	$\frac{5}{18} Y$
c_{3}^{*}	$\frac{9}{18} Y$	$\frac{10}{18} Y$

What is interesting?

- Consumes more period 2 with commitment than without!
- Why does commitment increase period-2 consumption?
- Because assumed anticipation is over future consumption utility alone (and not future anticipatory utility), happier looking forward to smoothed consumption than back-weighted consumption.
- But in period 2, this is no longer a consideration.

Belief-Based Utility

Reasons increased consumption profiles besides anticipatory utility?

- Precautionary savings.
- Backward-looking habit formation.

Reasons we may rarely see increasing consumption?

- Present bias: consumption smoothing may be self-control problem.
- Because: anticipatory model isn't quite right.
- Reminder: models should own all their implications
- Anticipatory utility makes some strange ones.

Belief-Based Utility

Stepping (well) outside the rational framework:

- What if Yugi can fool himself into believing lifetime income Y is something else?
- What might he tell himself?
- Choose to be optimistic to consume anticipation.
- But trades off against induced under-saving.
- See, e.g., Brunnermeier and Parker (2005).
- But ... what if Yugi can tell himself other stories?
- Like that he earns lots of interest on his savings?
- Or wonderful afterlife if maximize true lifetime utility.
- Fundamental Theorem of Optimal Distortion of Anticipatory Prefs:
- If no restrictions, then choose beliefs to maximize both anticipatory preferences and "direct-consumption" utility.

Belief-Based Utility

More generally, models (that many of us have tried) for "motivated" willful distortion of beliefs, if not Bayesian (as about to see!) run into problems...

- Psychological realism?
\Rightarrow Need a model of what are the limits to distortions.

[^0]: \rightarrow

